Imaging of RNA in situ hybridization by atomic force microscopy.
نویسندگان
چکیده
In this study we investigated the possibility of imaging internal cellular molecules after cytochemical detection with atomic force microscopy (AFM). To this end, rat 9G and HeLa cells were hybridized with haptenized probes for 28S ribosomal RNA, human elongation factor mRNA and cytomegalovirus immediate early antigen mRNA. The haptenized hybrids were subsequently detected with a peroxidase-labelled antibody and visualized with 3.3'-diaminobenzidine (DAB). The influence of various scanning conditions on cell morphology and visibility of the signal was investigated. In order to determine the influence of ethanol dehydration on cellular structure and visibility of the DAB precipitate, cells were kept in phosphate-buffered saline (PBS) and scanned under fluid after DAB development or dehydrated and subsequently scanned dry or submerged in PBS. Direct information on the increase in height of cellular structures because of internally precipitated DAB and the height of mock-hybridized cells was available. Results show that internal DAB precipitate can be detected by AFM, with the highest sensitivity in the case of dry cells. Although a relatively large amount of DAB had to be precipitated inside the cell before it was visible by AFM, the resolution of AFM for imaging of RNA--in situ hybridization signals was slightly better than that of conventional optical microscopy. Furthermore, it is concluded that dehydration of the cells has irreversible effects on cellular structure. Therefore, scanning under fluid of previously dehydrated samples cannot be considered as a good representation of the situation before dehydration.
منابع مشابه
Combination of fluorescence in situ hybridization and scanning force microscopy for the ultrastructural characterization of defined chromatin regions
متن کامل
Sensitivity Analysis of Frequency Response of Atomic Force Microscopy in Liquid Environment on Cantilever's Geometrical Parameters
In this paper, the non-linear dynamic response of rectangular atomic force microscopy in tapping mode is considered. The effect of cantilever’s geometrical parameters (e.g., cantilever length, width, thickness, tip length and the angle between the cantilever and the sample's surface in liquid environment has been studied by taking into account the interaction forces. Results indicate that the r...
متن کاملSingle-molecule RNA detection at depth via hybridization chain reaction and tissue hydrogel embedding and clearing
Accurate and robust detection of mRNA molecules in thick tissue samples can reveal gene expression patterns in single cells within their native environment. Preserving spatial relationships while accessing the transcriptome of selected cells is a crucial feature for advancing many biological areas, from developmental biology to neuroscience. However, because of the high autofluorescence backgro...
متن کاملدورگهسازی در محل؛ اصول و کاربردها : مقاله مروری
In situ hybridization (ISH) is a method that uses labeled complementary single strand DNA or RNA to localize specific DNA or RNA sequences in an intact cell or in a fixed tissue section. The main steps of ISH consist of: probe selection, tissue or sample preparation, pre-hybridization treatment, hybridization and washing, detection and control procedure. Probe selection is one of the important ...
متن کاملEffect of nanoporous TiO2 coating and anodized Ca modification of titanium surfaces on early microbial biofilm formation
Background: The soft tissue around dental implants forms a barrier between the oral environment and the periimplant bone and a crucial factor for long-term success of therapy is development of a good abutment/soft-tissue seal. Sol-gel derived nanoporous TiO2 coatings have been shown to enhance soft-tissue attachment but their effect on adhesion and biofilm formation by oral bacteria is unknown....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of microscopy
دوره 182 Pt 3 شماره
صفحات -
تاریخ انتشار 1996